Archive | Undergrads RSS feed for this section

Learning – Always in Style

27 Feb
Take Rational Course Design with Margaret Weck!

A message from HAPS President Emeritus, Margaret Weck!

Have you ever noticed how variable the depth of learning is amongst students in your classroom – even when you have students with very similar backgrounds and levels of preparation?  Perhaps you’ve looked for patterns or specific characteristics that might help explain this variability.  After all, if you can find consistent and predictable behavioral patterns, you might discover the key to motivating and assisting those who are struggling with coursework.  One useful tool for doing just that is to identify each student’s preferred “learning style,” a method that groups students based on their preferred means of learning.  Interestingly, this very topic was the focus of a HAPS –L discussion forum this past summer.   Following is a brief summary of the main points of that discussion supplemented with a little additional information.

A 2004 book by Coffield, et al. (1) identified 71 different learning style models, most of which are variations of two particular general themes. One of these themes is psychologically-oriented and looks at how individuals make sense of their personal experiences.  Examples include David Kolb’s Learning Styles Inventory (LSI) and Zubin Austin’s Health Professionals Inventory of Learning Styles (H-PILS).  The second major theme focuses more on neurological sensory information processing.  Examples include the right-brain vs. left-brain dominance tests and Neil Fleming’s Visual, Aural, Read/Write, Kinesthetic (VARK) inventory, a tool that indicates a person’s preferences for sensory modalities that most smoothly facilitate the mastering of new information.  

Will I be able to definitively resolve the central issues of learning styles in this post?  Of course not.  As we all know, it is notoriously difficult to “prove” anything, even without the additional handicap of measuring psychological processes through self-report.  In my opinion, it’s not worth the necessary paper or electrons to engage in a heated debate over this, especially since the take-home message is pretty much the same regardless of the outcome.  

Even those who strongly advocate the use of learning styles are aware of the limitations of each specific model and the instruments used to categorize individual learners.  Furthermore, the results of every inventory are full of questions of validity, reliability, and stability.  In other words, what does it really mean for someone to be an “assimilator,” or a “kinesthetic learner,” or “right brained?”  Are people with one tendency actually incapable of learning in any other way? Are these tendencies fixed, or can one improve or broaden native capabilities or preferences with enough effort and exposure to new types of learning?  The questions are endless, and addressing them is beyond the scope of this article; however, Edutopia (2015) has an overview of the various opinions and positions held by education leaders on learning styles: http://www.edutopia.org/article/learning-styles-real-and-useful-todd-finley.  

Since 2008 (2) rigorous educational research has not shown that specific instruction targeted toward a student’s learning style produces any statistically significant improvement in measured learning as compared to a non-preferred learning style.  Yet the debate over the usefulness/uselessness of learning styles persists.  

As far as course design is concerned, “universal” instructional design already encourages the use of multiple delivery modes to both present and assess student understanding of the most important ideas in our content.  Using multiple forms of representing and expressing key information automatically helps students find at least one point of entry into the content. So if preferred learning styles are real facilitators of learning, universal design already addresses them to a large degree.  Additionally, multiple presentation and assessment modalities provide reinforcement and a variety of possible retrieval cues which should help everyone – regardless of learning style.

One big positive offered by learning styles is that they are a non-threatening way to engage students in conversations about their learning.  Many students do not routinely participate in systematic self-reflection, but we can encourage them to talk about how they learn and what it means to demonstrate their own understanding of a subject by using easy-to-understand terminology found in the learning styles inventory.  As long as we don’t affix permanent labels to our students, which in effect “excuses” them from mastering the material, learning styles can provide students with insight into their own learning and offer a source of concrete strategies for engaging with course material.

  1. Coffield, F., Moseley, d., Hall, E., & Ecclestone, K. (2004) Learning styles and pedagogy in post-16 Learning: A systematic and critical review. London: Learning and Skills Research Centre.
  2. Pashler, H., McDanierl, M., Rohrer,  D. & Bjork, R. (2008) Learning Styles: Concepts and Evidence. Psychological Science in the Public Interest 9(3):105-119.

Do Our A&P Students Know How to Read? Part 3

20 Feb
valerie-lee

A message from Valerie Lee, an assistant professor at Southern Adventist University who just started her 6th year of teaching and loves HAPS!

In Parts 1 and 2 of this blog series, we identified that Anatomy & Physiology students are having difficulty with reading comprehension.  More specifically, their struggles are not limited to understanding specific content; rather, they are struggling with general vocabulary comprehension.
(To view Part 1 &/or Part 2 of this series,  Click the Link(s):
“Do Our A&P Students Know How to Read
 -PART 1             -PART 2

For her Southern Scholars senior research project, Molly Theus, first year Doctor of Veterinary Medicine student at the University of Georgia in Athens,  attempted to seek insight into this problem by asking four questions:

  1. Does a positive correlation exist between cumulative GPA and vocabulary comprehension?
  2. Does a positive correlation exist between time spent reading for pleasure and vocabulary comprehension?
  3. Does a positive correlation exist between being read to as a child and vocabulary comprehension?
  4. Is there a link between a student’s major and vocabulary comprehension?

Molly chose six classes as candidates for investigation: General Biology II, Principles of Biology, Anatomy and Physiology II, Cell and Molecular Biology, Studies in Daniel, and Pathophysiology (Table 1). These classes were chosen to include one lower (n=42) and one upper division (n=31) biology-major class, one lower (n=43) and one upper division (n=32) nursing class, and one lower (n=27) and one upper division (n=20) general education class (total n=195). To assess personal reading habits and history, a questionnaire was distributed to all students in the six selected classes. To assess vocabulary comprehension, a twenty-question multiple choice vocabulary quiz was also distributed. In order to assure anonymity, informed consent and student information forms were assigned a unique three number code corresponding to each questionnaire.

Participants were given a two-week period of time in which to complete the questionnaires. Once the packets were collected, each informed consent document containing student names was separated from the rest of the forms so that quiz scores were kept anonymous. The names were needed to compile average GPAs and class-standing information for each participant. GPA and class-standing was then matched to quiz scores using the unique numerical codes. We made use of an ANCOVA linear model to analyze our data. The number of questions missed on the vocabulary assessment was the dependent variable and the independent variables are listed in Table 2. University GPA was rank-transformed to meet parametric assumptions. Analysis was performed using R version 3.3.0.

The preliminary result yielded three key results:

KEY RESULT 1: Students’ reading for pleasure had no statistical significance for predicting higher scores on the vocabulary quiz (Table 2). This was contrary to what we had hypothesized based on the literature.  

KEY RESULT 2: In our model, the amount of time parents spent reading to their child was a statistically significant predictor of scores on the vocabulary comprehension quiz. This relationship was consistent even when controlling for university GPA (F(3, 183) = 4.80, p = 0.003; Figure 1).

KEY RESULT 3: A higher cumulative university GPA was also a significant predictor for improved quiz scores (F(1, 183) = 20.39, p = <0.001; Figure 2).

Molly and I were surprised that reading for pleasure was not a statistically significant indicator of vocabulary comprehension. Molly suggests several possible interpretations:

    • Students choose reading materiel at or below their reading level.
    • If a student’s reading level is low, that might inhibit acquisition of non-content specific collegiate vocabulary.
    • Self reporting is not a precise tool.

What can we do with this information?

  • Early intervention seems to be key to the issue of vocabulary comprehension
  • Collegiate students identified as struggling with non-content specific vocabulary comprehension need interventions as well. Possible interventions include encouraging them to read challenging books outside of class and providing mentor support.
  • This is an interdisciplinary issue that needs to be addressed in every department.

The preliminary results are very interesting and both Molly and I are interested in collecting more data in the future by expanding the background questions asked and surveying both private and public institutions. If you are interested in helping us, contact me at vlee@southern.edu.

Do Our A&P Students Know How to Read? PART 1

5 Feb
valerie-lee

A message from Valerie Lee, an assistant professor at Southern Adventist University who just started her 6th year of teaching and loves HAPS!

Years ago, I took a graduate level educational class called “Teaching Reading in the Content Area.”  This class was geared toward elementary and secondary schools; I never dreamed the information presented would be relevant to me later as a professor in a college classroom.

I teach a second semester combined Anatomy and Physiology course nearly every term. My students are primarily freshmen planning to pursue programs in Nursing or other Allied Health Fields.  Early in the semester, I tell them this class is like learning a new language.  So, I try to emphasize word roots while pointing out the meanings of Latin prefixes and suffixes.

Even though studious students focus their efforts on memorizing anatomy-specific vocabulary, they surprisingly have difficulty on exams with the meanings of English words that I assume all students know. After seeing a discussion about this issue on the HAPS listserv in December 2015, I realized I wasn’t alone.

Over the course of a few days, A&P professors all over the country added basic vocabulary words their students struggled with to a list I compiled.

Table 1 includes some of the non-content-specific words with which A&P students routinely have trouble.

terms_not_understood

 

Table 2 includes many content-specific words that A&P students often confuse.  

terms_easily_confused

Quizzing students on the meanings of these words, on the first day of class, might be an effective tool for encouraging students to assess their current level of preparation and readiness for the course.  

Thinking back to my educational class, I realize this is not a new problem. So, what does the literature have to say about the problem and what steps are suggested to provide solutions to the problem?  Molly Theus, one of my former students and now a first year veterinarian student at UGA, prepared a literature review on the subject. To read Molly’s review, stay tuned for next week’s blog.

In Search of the Core Principles of Human Anatomy

27 Apr
A message from HAPS Central Regional Director, Murray Jensen.

A message from HAPS Central Regional Director, Murray Jensen.

HAPSters spend a lot of time discussing the teaching and learning of anatomy and physiology.  Check out this post from long time HAPSter and Central Regional Director, Murray Jensen.  Murray is trying to generate a bit of controversy about teaching anatomy and long hot lists that we require our students to memorize.  Just how important are all those names and structures?  Look forward to a retort from graduate student Bradley Barger next week.

After 25 years of teaching entry-level anatomy and physiology, I can safely say that I’ve begun to figure a few things out – like the importance of setting high expectations on the first day of class; you have to scare the kids a bit.  All HAPSters know that one.  Another thing I’ve begun to figure out is how to teach human physiology.  This is in large part due to the work of Joel Michael and his group who identified the core principals of physiology  (http://advan.physiology.org/content/33/1/10).    Energy flow, homeostasis, and a few other concepts set the stage for pretty much every topic in physiology.   I use Michael’s core principals to design my course, write curriculum, generate exam questions, etc.  It’s a powerful tool for those of us who teach entry-level physiology. Required Structures ListI also teach basic human anatomy, and after 25 years and a couple thousand students, I can say with confidence that I really don’t know what I’m doing.  I remember vividly the first human A & P course I taught.  Skeletal system .. skull anatomy…hmmm…what structures should be on the hot list?  Ethmoid? Of course. Sphenoid? Obviously.  How about the foramen spinosum?  Should that be on the list? To facilitate the decision process I used Rule One of Teaching – you teach the way you’ve been taught.  In deciding what structures to include on my own hot list, I simply went back to the notes I used as a student, “What did Dr. Ivan Johnson make me learn?” Turns out Dr. Johnson indeed had me learn the foramen spinosum; therefore it must be important, and so it went on my very first hot list for skull anatomy.   Twenty-five years later I still have my students learn the foramen spinosum.  Why?  The best I can do is “because I had to do it!” Blindly following Rule One is not professional.  I would like to do better.  Joel Michael’s core principles greatly improved my ability to teach physiology – his work established an epistemological foundation for physiology education.  Now when a student asks “why do we have to learn about vasopressin?” I can confidently answer that it fits into the bigger picture of how the body works, and vasopressin’s role in the homeostasis of sodium, water, and blood pressure.  Much, much more satisfying than responding, “Well…I had to learn it!” or even worse “Because it will be on the exam.” In the past few years I’ve been pushing my anatomy colleagues for answers.  What should kids learn about anatomy in my entry-level course? What should they learn first?  If a student wants a career in anatomy, what are the themes? What’s at the foundation of a conceptual understanding of human anatomy?  We’ve had some good beginning ideas: orientation, cavities, medical terminology, liquids and solids, layers have promise.  But there is nothing official at this stage – just some good conversations.  And nothing that helps me figure out if I should include the foramen spinosum on the hot list. Identifying the core principles of anatomy is a worthy quest, and HAPS leadership is looking into starting a task force to get things moving.  I’ve been working with Bradley Barger, PhD candidate in Anatomy and Cell Biology at Indiana University, and we’ll be hosting a workshop at San Antonio for others interested in the project. In pondering the task ahead, I think I’ve identified a significant question, but some background is needed first.  Dr. Ernest Rutherford, Nobel Prize winning physicist from way back, has a quote, “All science is either physics or stamp collecting.” I think Rutherford is correct – everything in science boils down to physics.  When teaching human physiology and thinking about Michael’s core principals, I see physics (e.g., diffusion, pumps, gradients, barriers, energy).  If students can comprehend some basic physics, then they can make some good strides toward understanding human physiology. My big question: Is there any physics in anatomy?   At this time I don’t see any physics.  I see terminology, orientation, embryology, and sometimes even design (gasp!) – but I don’t see physics. Disagree?  Disagree strongly? Well…make a list of your own core principles of human anatomy and come to the workshop in San Antonio.  Help me figure out if I should keep the foramen spinosum on my hot list.

Meet Becca!

1 Mar

HAPS is a society focused on the teaching and learning anatomy and physiology, but educators are just half of this equation.  We wouldn’t be here if it wasn’t for our students.  So welcome to a new series of HAPS blog posts featuring A&P student extraordinaire, Becca Ludwig.  

A message from Becca!

A post from Becca!

I have been a student for a solid 17 years if you count from the day when I first stepped into my kindergarten class in 1998 to the time I walk across the stage with my Occupational Therapy degree in 2015. This is my last semester of coursework in my program before I go off into the big world to practice the art of Occupational Therapy. This holds some bitter sweet feelings for me. I love the idea of being a professional and making and impact on my clients’ lives, but I also love being a student and learning new things.

I have been a member of HAPS for a year now and have come to appreciate the professor’s side of the educational process. What you guys do is not easy. Over the course of the semester I will be writing a short series of posts about the student perspective on common things related to college life. This is a chance for you HAPSters to get inside of the student mind….

WARNING: It may be a scary place!

Note I am not the typical student…… or person for that matter, but I will try my best to explain the student perspective.

It's all good!

A Corporate Training Model

5 Nov

In one of my earlier lives, I was a research associate for a USDA scientist in Auburn, Alabama.  At the time, my husband was a graduate student in the Fisheries Department at Auburn University.  I had been teaching physiology to pre-pharmacy and pre-veterinary students at Auburn, but took a chance to get a civil service rating by taking a temporary position at the nearby USDA lab.  The majority of my activities related to nutrition research, specifically total body nitrogen analysis.  The scientist I worked for, Dr. John Frandsen, was studying the effects of parasite loads on the nutritional needs of various experimental animals.  When I took over the job, he had accumulated a backlog of research specimens to process – an entire freezer full of rats waiting to be liquified in nitric acid so their nitrogen content could be determined.  His previous RA had been hampered by a lack of equipment, but a budget windfall allowed us to quadruple our processing equipment.  This alone would have simply moved the bottleneck from one stage (frozen rats) to another (liquified samples), if it weren’t for one piece of high-tech equipment: a “nitrogen auto-analyzer,” which could process about 40 samples at a time without constant adult supervision.  Within a span of about 6 months, we managed to slog through about 3 years’ worth of experimental subjects, allowing Dr. Frandsen to speed up submission of manuscripts for publication.

The autoanalyzer was a slick piece of work: it had a robotic arm that swung from sample vial to analysis chamber, a disc with 40 slots that ratcheted around, and a spectrophotometer that could analyze the nitrogen content of samples in the chamber.  It cost a whopping ten thousand dollars (and that was in 1980).  Its purchase represented a huge investment to the USDA nutrition lab, and its successful implementation was essential to Dr. Frandsen’s research, the budgetary future of the lab, and my personal prestige.  To make sure we got the maximum use out of this sophisticated equipment, a 3-day training course was included in the purchase price.  The USDA budget was stretched to cover my travel expenses to Tarrytown, New York, where I interacted with a team of 2 company trainers and a loosely affiliated group of technicians whose labs happened to have purchased an autoanlyzer within the same time frame that Dr. Frandsen did.

This was my first (and, so far, my only) experience with corporate training. We met in a lab at the company building, where on the evening before the first day of training, we were each given training manuals and randomly assorted into groups.  We met from eight until five for three days, and we were given homework assignments every night. The training manual was broken down into the simplest of steps; the nightly assignments were clear, concrete, and circumscribed.   I knew exactly what was expected of me, and I made sure I completed my assignments as thoroughly as I could.  Every morning, we started with a review of the assignments, our trainers testing our familiarity with the information covered in the homework. We covered background concepts as well as technical steps. We practiced and critiqued. We debriefed and repeated.  We questioned each other’s results, analyzed plans, supported decisions. Even knowing we would only work together for three days, we did not question the benefit of forming teams and working to support each other’s development of skills.

I could not, now, recall the practical information learned in that crash course. I do remember confidently running the equipment and training the technicians to run it as well.  Mostly, I remember being amazed at the success of the corporate training methods. There were some assumptions made by those corporate trainers: that we all had a basic competence coming in; that we were prepared to spend the time needed to learn the techniques, and that we would in fact do our homework and come to class every day, and be attentive and participate fully in all aspects of the training.  I also was impressed with the training materials: nothing was left to chance; all steps were spelled out, all processes explained in clear terms.  Trainers were on task for the entire class, following a procedure that was clearly honed by repetition.

As I try to respond to the needs of my own students, I wonder if I can adopt any of the tactics used by those corporate trainers.  Is it possible to spell out, step by step, what I need my students to learn?  Can I convey to them the need to have the mindset to do the homework and participate fully in their training, when my course is 15 weeks interspersed by the rest of their lives, rather than three intense days?  Can I get my students to see my course as a part of their professions, so that they move away from the reflex resistance of a young student and instead adopt the ‘can-do’ attitude of a productive team member?  I realize I’m working with a different cohort than the one I was part of in that training class, but I’d like to think that many, if not most, of my students are as motivated to learn as I was – at least, initially.  What can we do to help students start off effectively and stay on course? How can we help them develop an attitude of professional competence and cooperation?  As always, I look forward to your insights!

-Betsy Ott
President-Elect

HAPS Web 8- Student Lab Data Project

27 Oct
People working together to build a puzzle.

Helping students work together while improving the quality of lab data they can analyze…this is the goal of the Student Lab Data Project.

If you haven’t already gotten this idea, HAPS is an organization based on sharing and camaraderie between A&P instructors all around the world. In this vein, HAPS member Julie Dias, with the crucial support of HAPS Executive Director Peter English, built a dynamic website to enable Laboratory Data Collection and Sharing Amongst Post-Secondary Institutions.  

The project stemmed from a desire to increase student interest in data collection and analysis by allowing them to share their data with other students around the world who were conducting similar experiments.  It was also hypothesized that sharing data could result in a larger pool of data for under-represented groups which may include students in higher age categories, smokers, elite-level athletes and possibly even males.

The project includes three different spreadsheets to choose from:

  • EKG – heart rate, PR interval, P wave duration, QRS duration, T wave duration (before and after exercise)
  • Heart Rate and Blood pressure (systolic and diastolic ) before and after exercise
  • Spirometry – respiration rate, tidal volume, inspiratory reserve, expiratory reserve, vital capacity, FEV1, FVC (before and after exercise)

All three spreadsheets also include the following demographic parameters: gender  and age (both mandatory), and ethnicity, BMI, waist circumference, activity level, and smoker (all optional).

Any equipment for physiological data collection can be used.  There is a column for inputting the type of equipment used to gather the data, such as Vernier with Logger Pro, BioPac, iWorks, etc.  Contact Julie Dais to receive your private Google Docs spreadsheet for your institution, which will enable you to contribute data to the project.  You do not need to be a HAPS member to do this.

A second aspect of the project includes resources to support basic statistical analyses using MS Excel.  Data analysis templates are available along with instructions on how to perform these analyses and how to interpret the results.  If you have questions or comments about the data analysis, you can contact Erin Radomske.  Periodically the data submitted by the various participating colleges will be “curated” or further examined for erroneous results and moved to an Excel file on this page.  However, to access this file of group data, you need to be a HAPS member.  Please feel free to comment on this activity and make suggestions by using the Lab Data Forum.

This project represents just the sort of innovative collaboration fostered by HAPS that makes membership in the organization so incredibly valuable.

HAPS Web 5- The Central Regional Meeting

5 Oct
Eastview High School

Join your fellow HAPSters at the Central Regional Meeting on October 17-18.

It isn’t too late to register for the HAPS Central Regional Meeting on October 17-18 in Minneapolis, MN.  The conference is being held at Eastview High School in Apple Valley, Minnesota and is geared for both college and high school anatomy and physiology educators.  Eastview High School is a large suburban school that has ample space for such a meeting.  The school is close to several hotels, is a 10 minute drive from the Mall of America, and is about a 20 minute drive from the Minneapolis/St. Paul International airport.  Murray Jensen, the HAPS Central Regional Director, is the conference coordinator.

Regional conferences provide an excellent opportunity to re-connect with the HAPS community between the annual conferences, which happen in May.

Featured speakers at the event include:

Dr. Kevin Petti
Anatomia italiana: Art and Anatomy in the Italian Renaissance”

Sponsored by the American Association of Anatomists

Wendy Riggs – Chair of HAPS Communications Committee
“Its Flipping Fun!  Notes on how to flip an A&P class”

Dr. Paul Iaizzo – Director, The Visible Heart Laboratory, University of Minnesota
“Cardiovascular Advances at the University of Minnesota: Past, Present, and Future”

Dr. Arthur G. Erdman
“Development of Medical Devices Using Virtual Prototyping”

Cynthia Clague, Ph.D. – Director, Research & Advanced Technology Medtronic
“Anatomical Foundation of Structural Heart Device Design”

Dr. Jon Jackson
“Anatomy by the Slice: Radiology to bring real human anatomy to any classroom, anywhere.”

 

For questions, please contact the HAPS Main Office at info@hapsconnect.org or 1-800-448-4277.

 

HAPS-I Scholarships

4 Aug
The HAPS Institute offers working Anatomy and Physiology instructors the opportunity to earn graduate credits or just gain Professional Development in a variety of flexible formats tailored to their busy schedule.

The HAPS Institute offers working Anatomy and Physiology instructors the opportunity to earn graduate credits or just gain Professional Development in a variety of flexible formats tailored to their busy schedule.

This might surprise you (!) but we Anatomy and Physiology instructors are usually pretty busy people.  HAPS, as usual, aims to support us by offering opportunities for professional development via HAPS Institute (HAPS-I) courses.  These courses are designed to broaden our understanding of our subject by enabling us to participate in interactive learning communities made of peers who are also teaching anatomy and/or physiology.  HAPS-I courses include both subject-specific content as well as practical teaching and learning methodology and in this way exemplify the mission of HAPS as a whole.  Additionally, each course provides participants with the opportunity to publish their work in the peer-reviewed Life Science Teaching Resource Community.  Courses are available in two separate tracts to maximize flexibility for participants, allowing them to earn graduate credits or simply participate in the course for professional development.

The next round of HAPS-I courses are scheduled to begin between August 24 and September 15.  I’d personally like to take all of them.  Dr. Margaret Weck’s course on Rational Course Design “briefly reviews the major concepts associated with the “backwards design” model of rational course development, which stresses the value of thinking through the ultimate outcome goals (both in content mastery and cognitive skill development) for a course as a first step the course design process.”  I want to take that class!  And Dr George Ordway’s course on Advanced Cardiovascular Physiology will “provide college-level instructors with an opportunity to develop their understanding of the anatomy and physiology of the cardiovascular system, including key cellular and molecular mechanisms responsible for function of the heart and blood vessels.”  Oooh!  I want to take that class too!  And then Dr. Chad Wayne will be offering THREE classes on reproductive physiology.  Whaaaat?!?!?!  I want to take ALL of those classes!

And not only does HAPS offer these amazing courses, they also offer scholarships to support you in TAKING these cool courses. In fact, the next scholarship deadline is August 15.  To be eligible for this scholarship, you need to be a HAPS member in good standing, you must be a regular full-time employee teaching anatomy and physiology, and you must have a teaching load that includes at least one section/class of anatomy and/or physiology.

So pick the fall HAPS-I course you’d like to complete, and apply for that HAPS-I scholarship by August 15.  And then vote on which class you think should I take!

Musings on Video Lectures…

21 Jul
In this lecture, I received 2 phone calls,  1 text message, dropped my phone, and had a sympathetic nervous response when something fell off the wall in my office.  I think I should re-record this lecture.

In this lecture, I received 2 phone calls, 1 text message, dropped my phone, and had a sympathetic nervous response when something fell off the wall in my office. I think I should re-record this lecture.

Summer is such a luxurious time to reflect on my teaching and get fired up to make improvements.  It is so nice to feel my excitement growing as I get my class materials together for the fall semester, which is only a month away.

After settling into the decision NOT to flip Human Biology this fall, I decided to make use of all the extra time I would have to re-record my Human Anatomy video lectures.  I feel this is a little bit insane…this will be my 4th time teaching (and flipping) Human Anatomy and my third time re-recording my flipped video lectures.  It seems more than mildly insane to re-record lectures this often, but I understand that I am not only ironing out the wrinkles in my flipped pedagogy, but I am also ironing out the wrinkles in my presentation of CONTENT.  I have taken it for granted that in a traditional classroom I get to re-work my lectures and improve on my craft every time I teach the course.  This is a fantastic assurance that I will constantly GET BETTER.  But in the flipped scene, improving the lectures is much more time consuming.  Nonetheless,  I am clearly in need of creating a “new edition” of my lectures, though I am sincerely hopeful that THIS set of videos will last more than one semester.

As I prepare to record lectures, I can already tell that the videos will be better.  I have a better understanding of the big picture, which will make the individual pieces fit together more cleanly.  I have more experience with the tricky parts which allows me to emphasize the concepts that will be most helpful to my students.  And I am hoping to record the lectures at a more leisurely (and reasonable) pace, without the imminent deadlines that inevitably means I end up trying to present content in front of a video camera in my office by myself, exhausted and delirious, at two in the morning.  Ahem.  My fingers are crossed.