Would you be ready?

Imagine that while preparing those last few materials for the start of the semester you receive a call from Disability Support Services indicating that you will have a student with total blindness in your A&P class. The semester begins in two days.

Would you be ready?

To be accessible for students with disabilities, here are some things you can address:

  • PowerPoint slides need to have high contrast between the background and font colors. The reading order of each slide must be verified, and font sizes should be at least 24 point. Additionally, all visuals must have Alternative Text (aka Alt Text or Alt Tags). Alternative Text is a description that enables an individual with a visual impairment to learn what a sighted person would learn from the image. However, they should not be so detailed as to further increase the amount of time the student would need to acquire the information. Alt Tags for STEM images may require two parts.
  • Word documents must be written in a sans-serif font and be organized with headers. Tables require a repeating header and an Alt Tag. Further, because screen readers pronounce non-printing characters, the document shouldn’t have unnecessary spaces or tabs. If you don’t know what it sounds like to hear text verbalized by a screen reader, listen to Accessible vs. Inaccessible.
  • The physical laboratory space must accommodate students with disabilities, and there must be accessible versions of the lab materials and equipment. Institutions should have policies regarding guide dogs and students requiring wheelchairs and scooters in the science laboratory. A discussion on preparing for students with disabilities in the science lab would require a separate blog post. In the meantime, my website has a link to a study I conducted in 2016 evaluating accommodations provided for students with visual impairments in college biology laboratories. It contains information on accommodations for science labs, and those which study participants found helpful and not so helpful.
  • Textbooks are another consideration. Publishers are working toward full accessibility, but there’s a lot of work yet to be done. Check with the publisher about your textbook’s accessibility. Ask a lot of questions. Some publishers honestly believe they have accessible versions of their texts, when in fact they do not.

Several resources exist to help create accessible course materials. I maintain a website, Accessible Science, that has numerous resources on accessibility and other information you may find useful. Newer versions of Microsoft® Office have built-in accessibility checkers, PC Accessibility Checker and Mac Accessibility Checker, that scan for accessibility issues and indicate how to fix any problems they identify. PowerPoint Accessibility and Screen Reader Accessibility in Word demonstrate how to create accessible PowerPoint slides and documents.

New courses should be developed according to the tenets of Universal Instructional Design (UID), which recommends that accessibility be integrated into courses as they are developed. Adhering to the principles of UID helps students even if you never have a student with a disability in your class. Foreign language students benefit from subtitles on videos, for example, and larger font sizes on PowerPoint slides benefit students seated farther from the screen.

For existing courses, it takes an incredible amount of time to retrofit a laboratory science class so that it is fully accessible. Since increasing numbers of students with disabilities are attending college, my suggestion is to start preparing now so you don’t panic when you get that call. Feel free to email me if I can help.

img_1263

Dr. Barbara R. Heard is an associate professor of biology at a community college in NJ. She is interested in supporting students with disabilities in science, especially students with visual disabilities.

ABC’s of A&P

It is the ultimate challenge and lifelong pursuit of educators to facilitate learning among students with different educational backgrounds, first languages, and learning styles.  Concurrently, we work to foster individual strengths and ideas that each student brings to our classroom. With no single right way to get through to everyone, each class presents us with the awesome challenge of a lifetime!

So how can we assess our teaching methods and students’ knowledge acquisition without a test? Or better yet, before the test they will ultimately have to take? And how can we make the learning fun?

For me, one answer is a creative project.  Students in Human Anatomy and Physiology spend much of their time memorizing copious facts hoping to apply them at exam time. The act of creating something from those facts is an enjoyable way for students to take material that is complex, break it down into digestible components, tap into their creative side and ultimately ignite different aspects of their brain into flames of learning. One of my favorite creative assignments calls upon students to write a children’s storybook based on a topic we have covered.  Students must capture the big picture and then focus on filling in the details that are most relevant to their own particular stories.

Recently, three of my students created a children’s story after learning about the kidneys.  The title of their story was The Mighty KidneysWheres Sodium?  The “Kid”neys are a group of three friends (shaped like kidneys) who help the kidneys work properly. In the episode Wheres Sodium? there is a problem in the distal convoluted tubule (DCT).  As the “Kid”neys get filtered, and wind their way through a nephron they finally make it to the DCT where they encounter the villain: Caffeine (da da dum). In their story, Caffeine has somehow banished the friendly Al Dosterone.  The students were clever enough to make the shape of Caffeine and Al Dosterone similar enough so that readers could imagine how caffeine might interfere with aldosterone’s action. In the end, the “Kid”neys save the day by contacting the brain’s thirst centers.

In this story, AL Dosterone is the hero!
In this story, AL Dosterone is the hero!

Similar children’s stories submitted for this assignment also show how creative work engages and helps students personally assimilate an overarching theme in Human Anatomy and Physiology. Then the added nuances, unique to each students’ work, display knowledge of details that make the stories informative, engaging and interesting. Usually the illustrations are adorable. Creating a children’s story allows students to assess their understanding by breaking down the material, rebuilding it and adding their own unique subset of details with personal creative essence. Those students who can do this demonstrate their understanding of learning objectives.

Feedback from students who engage in this type of assignment is very positive, initiating comments such as, “We had a lot of fun with this project and hope you enjoy it as much as we did.” As a teacher, reading the stories of my students makes me happy because I know I got through to them with the core material; but then to watch them interact with that material in their own unique way makes me a very proud professor.


Bridgit Goldman has been teaching college level biology since 1998.  She has a Ph.D. in Cellular, Molecular, and Developmental Biology from The Graduate School and University Center of The City University of New York.  Since 2007 she has designed, developed and taught all the lecture and laboratory classes in Human Anatomy and Physiology at Siena College. 

“The Wave” – Neuron Action Potential Propagation

Some of our most popular blog posts describe teaching tips developed by HAPS members. We choose a handful of these to publish on the blog, but there are hundreds of tips that have been collected over the years. These little snippets are being linked to the HAPS A&P learning outcomes and posted to the HAPS website, for members only. So join HAPS now, and get access to many more teaching tips like this one.

Enjoy this teaching tip from HAPS Past President, Terry Thompson.

Objectives:

  1. Engage students with a kinesthetic demonstration of the action potential “wave” with ions moving in or out of membrane channels
  2. Generate visual memory tools to help students’ learning and long-term understanding
  3. Motivate critical thinking by having students analyze and evaluate various components of the activity as a model of the physiological events

Materials:

  • Color-coded cards: multiple cards with Na+/K+ on opposite sides; one card with ACh/Ca2+ on opposite sides; one card with neuron cell body/synaptic end bulb on opposite sides. Can use cardstock or plastic protective sleeves. Use large font to fill single page.

 Procedure:

  1. Line students up facing class (or each other if using two lines). Explain that students will represent the axolemma: phosphate “head”, lipid “legs”, voltage-gated channels “arms”.
  2. Give each student a Na+/K+ card and review relative concentration of each ion extracellular and intracellular. Designate: above “heads” as extracellular and floor as intracellular; right hand as voltage-gated Na+ channel and left hand as voltage-gated K+ channel. Start with Na+ card held toward observers, above their heads, in right hand.
  3. Demonstrate the depolarization/repolarization cycle by bringing Na+ card down in front of body, flipping K+ side toward observers as pass to left hand, then move above head.  Have all the students practice this synchronously until they feel comfortable, saying “depolarize” and “repolarize” out loud to help.  Discuss the electrogenic activity of the Na+/K+-ATPase pump as it relates to this kinesthetic demonstration.
  4. Review continuous conduction and challenge them to now complete the same movements but this time in sequence, like the “wave” in a stadium.  Show the “neuron cell body” and “ACh” cards and discuss what initiates the impulse.  Can elaborate on difference between ligand-gated and voltage-gated channels; graded potential, threshold, and action potential; neurotransmitter for motor neuron or other neurons; dendrites, soma and axon hillock; etc.  Students will often come up with ideas of ways you could include other elements in the demonstration, or at least evaluate and understand what this particular activity as a model is NOT showing.
  5. “Start” the first person in line by saying “threshold”, and allow the “wave” to progress down the axon.  This usually elicits lots of laughing and suggestions from the audience.  Allow them to repeat until they produce a reasonable “wave”, starting each with a threshold stimulus.
  6. Finally as a reasonable “wave” is progressing down the line, run to the other end and flip your cards to show synaptic end bulb and hold the Ca2+ card above your head.  When the wave reaches you, bring the Ca2+ down and flip to ACh, passing it above your head for release of neurotransmitter at synapse with muscle or another neuron.  Discuss this added activity to the model as a way to summarize the activity.
  7. Extensions can include discussing what parts of this demonstration could be improved on or don’t accurately reflect the physiology.  Can also discuss what would need to be changed to demonstrate saltatory conduction instead of continuous conduction.

NOTE: This activity was also presented by Terry Thompson at 2016 HAPS Atlanta Conference as part of the group workshop entitled “Add Drama to Your Classroom – Great Kinesthetic Activities for Students.”

Quick analogy for subclavian artery name changes

Although it is not a particularly difficult concept, sometimes students have trouble remembering the different names that the subclavian artery takes on as it passes through the superior mediastinum and base of the neck into the axilla (as the axillary artery) and arm (as the brachial artery), or they don’t quite get that it is the same vessel with three different names.

Every one of my students has to drive along these roads to get to school.
Every one of my students has to drive along these roads to get to school.

One thing I do in lecture and lab is to analogize this name change using name changes for streets in town. Fortunately, I work at a university (Benedictine University in Lisle, IL) that is situated on a road (College Road) that changes name to the north (Yackley Avenue) and to the south (Wehrli Road) without changing direction appreciably. Every student has to drive along these roads to get to school. I tell my students that the subclavian artery is like Yackley Avenue, and when it crosses the lateral edge of the first rib (in this analogy, Maple Avenue, see Figure), it changes name to the axillary artery (College Avenue); it changes name again after crossing the inferior margin of the teres major muscle (Hobson Road, see Figure), at which point it becomes the brachial artery (Wehrli Road). I would wager that many (most?) towns in the United States have roads that change names in the same way, so that the analogy could be adapted to local conditions. A particularly good example, in Washington, DC, is Constitution Avenue, which starts as I-66E, changes to US-50E/Constitution Avenue after crossing Roosevelt Bridge, and then turns into Maryland Avenue after crossing 2nd Street NE.

Of course, every semester the students and I question the sanity of anatomists and city planners alike for changing a perfectly good name again and again. I wonder how many students, driving home from my anatomy class, are thinking about the different names for the main artery of the upper limb as they drive along Yackley Avenue/College Road/Wehrli Road?


Robert McCarthy is an assistant professor in the Department of Biological Sciences at Benedictine University in Lisle, IL, where he teaches human anatomy and evolution to undergraduate biology and health science students. Robert is a biological anthropologist who studies the evolution of speech and language, the primate skull, hominin evolution, and human anatomic variation.

RAAS – Glug Glug Glug…

When I teach endocrinology students our unit on the adrenal gland cortical hormones, I always post a PowerPoint slide which depicts a Wikipedia image of the renin-aldosterone-angiotensin-system (RAAS).

Renin-angiotensin-aldosterone_system
This image is licensed CC-BY-SA 3.0 by A. Rad. Accessed on 12/4/17.

Its author does an elegant job of elaborating angiotensin II’s targets and responses, which include increases in sympathetic nervous system activity, tubular Na+ reabsorption and K+ excretion and H2O retention, adrenal cortex release of aldosterone, arteriolar vasoconstriction with a concomitant increase in blood pressure, and posterior pituitary release of ADH (arginine vasopressin) leading to reabsorption of H2O by the collecting duct. Overall there is an increase in the perfusion of the juxtaglomerular apparatus (JGA), which offers the negative feedback signal to reduce renin output by the JGA.

I point out to students this elegant, multiple-organ defense of falling blood pressure: the kidney (for renin release), liver, lung, adrenal cortex, hypothalamus (for both CRH and ADH), and kidney (for elevated perfusion) is all automatic. But when I show diagrams from multiple sources, including texts, I offer this question, “What is missing from these images?” I do prompt them with a clue about loss of perspiration during  workouts, but the ‘lights don’t go on’ until I reveal a PowerPoint shape with this on it, “Glug, glug, glug” – then they smile …. because they realize that drinking fluids provides the fastest return from hypovolemia…

Be thorough. Connect the dots.


Post comes from Robert S. Rawding, Ph.D., Professor in the Department of Biology at Gannon University in Erie, PA.

Teaching Backwards: From Motion to Muscles

Have you taught those boring muscles lately? And those dreaded origins and insertions?

Bored student going through the motions of learning muscle origins and insertions...
Does this look familiar?

And when students get to the exam they are frazzled and sad? Why do we do the same things over and over and wonder why students don’t recall what we teach them? Muscles are one of the most dynamic tissues of the body so let’s teach them dynamically!

Working in healthcare for the past decade has taught me that patient “buy in” usually leads to better outcomes. Interestingly enough, students are the same way. So why not let them pick some of the muscles they have to learn? They can choose based on personal or occupational interest. For example, if your group is interested in occupational therapy, focus on muscles that are involved in activities of daily living. Are they mostly nursing students? Include muscles commonly strained by nurses in their daily practice from poor lifting mechanics or improper conditioning. This could incentivize strengthening to prevent future injuries. Student buy in may develop into personal investment, which enhances their compliance and advances their outcomes. Follow this formula, and see what happens!

Formula 1:  Buy in > Personal Investment > Compliance > Improving Outcomes

It is also important to think about the breadth of material to cover. It’s not essential that  students learn every specific muscle and attachment, and an operational method may enhance recall. Consider the following four step process starting with motion and ending with the muscle. First, focus on the motion desired. Second identify the plane of motion and axis of rotation. Third, isolate the line of action. Fourth, label the primary movers. A possible fifth addition could be offering an everyday example.

Formula 2:   Motion Desired > Plane of Motion/Axis of Rotation > Line of Action > Primary Mover

Are your students having difficulty identifying the plane of motion and axis of rotation? Try this!
Are your students having difficulty identifying the plane of motion and axis of rotation? Try this!

If students have difficulty identifying the plane of motion and axis of rotation, have them poke a pencil through the middle of a large index card. Then place the index card in the plane of motion desired. If the body part contacts the card while going through the full range of motion, they’re in the wrong plane. The axis of rotation will automatically be perpendicular to the plane of motion for easy identification.

Next, they overlay a piece of string to identify a logical line of action across the joint.

String can help students identify the logical line of action across a joint.
String can help students identify the logical line of action across a joint. 

Using this method, students can isolate the muscles in that region responsible for the action. As a bonus, they can suggest an example of how that muscle is used in everyday life.

 

If you have the students pick a few of their own muscles too, be sure they are able to complete the process despite the muscle’s obscurity. I have always included a few interesting muscles for their action, shape or function. For example, the gluteus medius not only performs hip abduction, but also executes hip internal rotation due to its line of action. The temporalis not only functions in mandibular elevation but also retraction. The piriformis, besides being a cute pennant shaped muscle, is the only gluteal muscle with a sole proximal attachment on the sacrum. If you have some high level students, dare them to discover how the gluteus maximus can perform knee extension! How else could a patient with an above knee amputation negotiate stairs in a reciprocal fashion? And if that’s not fun enough, challenge them to identify the motion that occurs if one muscle attachment is fixated and the other is not. For instance, if the distal end of the Biceps Brachii is fixated, by placing the hand under a table, then the trunk will flex forward (unfixed).  Try it with other muscles too! Muscles are dynamic and should be taught that way. Because in the end, we want our students to look like this!

This student is having her "AHA!" moment!
This student is having her “AHA!” moment!

John Zubek is a Doctor of Physical Therapy and is an Assistant Professor of  Physiology at Michigan State University. 

Active Learning: A Practical Approach to Implementation

It’s likely that at this point I do not need to convince most of you that active learning can be highly beneficial to student learning.  There is a multitude of resources, including HAPS Educator articles, which discuss successful active learning in a variety of classroom settings.  But here’s the thing. With so many great ideas at our finger tips, where are we supposed to begin if we want to implement active learning in our own courses?  

GOALS

First, step back from the swarm of ideas swirling in your mind and reflect on your goals. What are the goals of your course (which may or may not be content-related)?  Your goals should shape the type of active learning exercise(s) you implement. Here’s what the participants at my workshop at the HAPS Annual Conference in May had to say about their goals with active learning:

Participants in a HAPS worskhop (May 2017) described their goals for active learning.
Participants in a HAPS worskhop (May 2017) described their goals for active learning.

 

PLAN

To ensure your efforts are manageable, start with just one or two sessions.  Upon successful implementation of the initial activity, you can build off it, or incorporating additional methods.  Allow enough time to develop the activity, implement it in class, and give yourself time afterward to assess and for providing student feedback if necessary.  Some (or all) of these steps can take a lot of time!

BUY-IN

This can be tough.  Students will sometimes resist the unfamiliar (i.e. not a standard lecture).  Be transparent.  Explain the goals of the activity, and if appropriate, share evidence to support the activity.  Ensure students that it is of the appropriate difficulty level for them and that you’re there to guide them.  Considering giving credit for participation, especially if it’s a regular part of class.  For more on this topic, check out the Cavannagh, et al. (2016) article or this blog post from Bryn Lutes at Washington University.

RESOURCES

Classroom Assessment Techniques: A Handbook for College Teachers by Angelo and Cross is a book that will walk you through identifying your goals, selecting appropriate activities for those goals, and it gives you a detailed guide for implementation of the activities and assessment.  Assessment is a critical part of scholarly teaching!  How else will you know if the original goals were accomplished?

Technology.  A simple, yet effective means of incorporating small snippets of active learning into a lecture can be interactive questions.  Similar to “clicker” questions, there are many web-based platforms which enable faculty to easily incorporate interactive questions (multiple formats) into lectures.  It’s an opportunity to give the students practice retrieving informing, as well as allowing instructors to see where students are in their understanding of the material.

Some audience response systems allow students to touch the correct answer on an image, and the data for the whole class shows up as a heat map!
Some audience response systems allow students to touch the correct answer on an image, and the data for the whole class shows up as a heat map!

Low-tech options.  In lieu of all of the apps and high-tech options out there we sometimes forget that a marker board, or pen and paper can be effective tools.  Drawing or writing out a process in a way that is meaningful to students (and maybe incorporating a drawing) is an effective means to promote learning.  Get creative with other materials too!  Pull ‘n’ Peel Twizzlers make a great model of vascular supply, and playdoh, pipe cleaners, paper, etc. can be used to model many different body parts.

While this is by no means an exhaustive list of resources available for us to use in teaching, I hope it helps you get started.  Establish your goals.  Pick an activity to meet those goals. Plan well, and don’t forget to include assessment!  Happy teaching!


Cavanagh, A.J.,  Aragón, O.R., Chen, X., Couch, B.A., Durham, M.F., Bobrownicki, A., Hanauer, D.I., & Graham, M.J. (2016). Student buy-in to active learning in a college science course. CBE Life Sci Educ 15(4).

Michael, J. (2006). Where’s the evidence that active learning works? Adv Physiol Educ 30: 159-167.

Pierce, R., J. Fox. (2012). Vodcasts and active-learning exercises in a “flipped classroom” model of a renal pharmacotherapy module.  American Journal of Pharmaceutical Education 76(10): 1-5.


Audra Schaefer is an Assistant Professor of Anatomy and Cell Biology who teaches neuroanatomy and histology to first year medical students.  She oversee multiple systems-based integrated courses that are part of the first two years in the medical curriculum.  She also conducts educational research, with interests in metacognition, study skills and remediation.